$$x = 30t \cos 70^{\circ}$$
 $y = 30t \sin 70^{\circ} - 16t^2 + 7$

Explain what the 30,70°, and 7 tell you about the free-throw shot.

I high about ground ground ground a.

$$x = 30t \cos 70^\circ$$

$$y = 30t \sin 70^{\circ} - 16t^{2} + 7$$

b. What is the maximum height of the basketball?

$$time = -\frac{b}{2a} = -\frac{30sin70^{\circ}}{2(-16)}$$
 $y = 19.4ft$

$$x = 30t \cos 70^{\circ}$$

$$y = 30t \sin 70^{\circ} - 16t^{2} + 7$$

c. At what time t does the ball reach the basket?

$$10 = 30 + \sin 10^{\circ} - 16 + 2 + 7$$

 $t = 1, 648 + 860$

$$x = 30t \cos 70^{\circ}$$
 $y = 30t \sin 70^{\circ} - 16t^2 + 7$

d. Assuming that the person shoots the ball on an accurate path toward the center of the basket, will the shot go in the basket? Explain your reasoning.

$$x = 30t \cos 70^{\circ}$$
 $y = 30t \sin 70^{\circ} - 16t^2 + 7$

with to make a basket. Assuming the same angle.

$$x = v + \cos 70^{\circ}$$

$$y = v + \sin 70^{\circ} - 16 + 2 + 7$$

$$\frac{15.8}{v \cos 70^{\circ}} = \frac{v + \cos 70^{\circ}}{v \cos 70^{\circ}}$$

$$y = v + \sin 70^{\circ} - 16 + 2 + 7$$

$$y = v + \cos 70^{\circ}$$

$$y = v + \sin 70^{\circ} - 16 + 2 + 7$$

$$v = 29.06 + 162$$